Formation and Stabilization of Raphasatin and Sulforaphene from Radish Roots by Endogenous Enzymolysis

نویسندگان

  • Jae-Won Kim
  • Mi-Bo Kim
  • Sang-Bin Lim
چکیده

The biologically active compounds raphasatin and sulforaphene are formed during the hydrolysis of radishes by an endogenous myrosinase. Raphasatin is very unstable, and it is generated and simultaneously degraded to less active compounds during hydrolysis in aqueous media. This study determined the hydrolysis conditions to maximize the formation of raphasatin and sulforaphene by an endogenous myrosinase and minimize their degradation during the hydrolysis of radish roots. The reaction parameters, such as the reaction medium, reaction time, type of mixing, and reaction temperature were optimized. A stability test for raphasatin and sulforaphene was also performed during storage of the hydrolyzed products at 25°C for 10 days. The formation and breakdown of raphasatin and sulforaphene in radish roots by endogenous enzymolysis was strongly influenced by the reaction medium, reaction time, and type of mixing. The production and stabilization of raphasatin in radishes was efficient in water and dichloromethane with shaking for 15 min at 25°C. For sulforaphene, the favorable condition was water as the reaction medium without shaking for 10 min at 25°C. The maximum yields of raphasatin and sulforaphene were achieved in a concurrent hydrolysis reaction without shaking in water for 10 min and then with shaking in dichloromethane for 15 min at 25°C. Under these conditions, the yields of raphasatin and sulforaphene were maximized at 12.89 and 1.93 μmol/g of dry radish, respectively. The stabilities of raphasatin and sulforaphene in the hydrolyzed products were 56.4% and 86.5% after 10 days of storage in water and dichloromethane at 25°C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster

We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of gluc...

متن کامل

Bio-Accumulation of Lead and Cadmium by Radish (Raphanus sativus) and Cress (Lepidium sativum) under Hydroponic Growing Medium

In order to investigate the accumulation and bio-absorption of lead and cadmium in radish and cress, the present study has been conducted in a completely randomized design in three replicates in a hydroponic growing medium. The first factor includes the plant type at two levels (radish and cress), and the second factor is consisted of lead (Pb) (first experiment) at two levels (50 and 100 mg/L)...

متن کامل

Bio-Accumulation of Lead and Cadmium by Radish (Raphanus sativus) and Cress (Lepidium sativum) under Hydroponic Growing Medium

In order to investigate the accumulation and bio-absorption of lead and cadmium in radish and cress, the present study has been conducted in a completely randomized design in three replicates in a hydroponic growing medium. The first factor includes the plant type at two levels (radish and cress), and the second factor is consisted of lead (Pb) (first experiment) at two levels (50 and 100 mg/L)...

متن کامل

Nitrogen, season and cultivar affect radish growth, yield, sponginess and hollowness

The optimization of nitrogen application for root crops such as radish is important not only for yield and product quality (sponginess and hollowness) but also for the environment. Therefore, we evaluated the effect of four levels of N application (0, 150, 300 and 450 mg l-1 N) on three radish cultivars (Saxa, Red Fuoko and White Ghiaccio) grown in pots in autumn/winter (from mid-October to mid...

متن کامل

Ethylene and carbon dioxide in the growth and development of cultured radish roots.

Ethylene is produced by cultured radish roots in amounts large enough to be physiologically important. When roots were grown in controlled atmospheres, applied ethylene was generally inhibitory to elongation, lateral root initiation, and cambial activity. 1% CO(2) similarly affected roots not given ethylene. In contrast, elongation and lateral root production of ethylene-treated roots were stim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2015